Evaluate module¶
-
pyro_risks.pipeline.evaluate.
evaluate_pipeline
(X: pandas.core.frame.DataFrame, y: pandas.core.series.Series, pipeline: Union[imblearn.pipeline.Pipeline, str], threshold: str, prefix: Optional[str] = None, destination: Optional[str] = None) → None[source]¶ Build and save binary classification evaluation reports.
- Parameters
X – Training dataset features pd.DataFrame.
y – Training dataset target pd.Series.
pipeline – imbalanced-learn preprocessing pipeline or path to pipeline.
threshold – Classification pipeline optimal threshold path.
prefix – Classification reports prefix i.e. pipeline name. Defaults to None.
destination – Folder where the report should be saved. Defaults to
METADATA_REGISTRY
.
-
pyro_risks.pipeline.evaluate.
save_classification_plots
(y_true: numpy.ndarray, y_proba: numpy.ndarray, threshold: numpy.float64, prefix: Optional[str] = None, destination: Optional[str] = None) → None[source]¶ Build and save binary classification performance evaluation plots.
- Parameters
y_true – Ground truth (correct) labels.
y_pred – Predicted probabilities of the positive class returned by a classifier.
threshold – Classification pipeline optimal threshold.
prefix – Classification plots prefix i.e. pipeline name. Defaults to None.
destination – Folder where the report should be saved. Defaults to
METADATA_REGISTRY
.
-
pyro_risks.pipeline.evaluate.
save_classification_reports
(y_true: numpy.ndarray, y_pred: numpy.ndarray, prefix: Optional[str] = None, destination: Optional[str] = None) → None[source]¶ Build and save binary classification metrics reports.
- Parameters
y_true – Ground truth (correct) labels.
y_pred – Predicted labels, as returned by a calibrated classifier.
prefix – Classification report prefix i.e. pipeline name. Defaults to None.
destination – Folder where the report should be saved. Defaults to
METADATA_REGISTRY
.