NASA FIRMS - Active Fire module¶
-
class
pyro_risks.datasets.nasa_wildfires.
NASAFIRMS
(source_path: Optional[str] = None, fmt: Optional[str] = None, use_cols: Optional[List[str]] = None)[source]¶ Bases:
pandas.core.frame.DataFrame
Wildfire history dataset on French territory, using data from NASA satellites. Accessible by completing the form at https://effis.jrc.ec.europa.eu/applications/data-request-form/
Careful when completing the form, you can either choose to get the dataset in json format or xlsx format. However if your source data is in a csv format, you can still use this class to clean it using the parameter fmt.
By default, the format is considered to be json.
- Parameters
source_path – str Path or URL to your version of the source data
fmt – str Format of the source data, can either be “csv”, “xlsx” or “json”. Default is “json”.
use_cols – List[str] List of columns to read from the source
-
fmt
= 'json'¶
-
kept_cols
= ['latitude', 'longitude', 'acq_date', 'acq_time', 'confidence', 'bright_t31', 'frp']¶
-
class
pyro_risks.datasets.nasa_wildfires.
NASAFIRMS_VIIRS
(source_path: Optional[str] = None, fmt: Optional[str] = None, use_cols: Optional[List[str]] = None)[source]¶ Bases:
pandas.core.frame.DataFrame
Wildfire history dataset on French territory, using data from VIIRS.
- Parameters
source_path – str Path or URL to your version of the source data
fmt – str Format of the source data, can either be “csv”, “xlsx” or “json”. Default is “json”.
use_cols – List[str] List of columns to read from the source
-
fmt
= 'csv'¶
-
kept_cols
= ['latitude', 'longitude', 'acq_date', 'acq_time', 'confidence', 'bright_ti4', 'bright_ti5', 'frp', 'type']¶