pyrovision.models#
The models subpackage contains definitions of models for addressing different tasks, including: image classification, object detection, and semantic segmentation.
RexNet#
- pyrovision.models.rexnet1_0x(pretrained: bool = False, progress: bool = True, **kwargs: Any) ReXNet [source]#
ReXNet-1.0x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
- pyrovision.models.rexnet1_3x(pretrained: bool = False, progress: bool = True, **kwargs: Any) ReXNet [source]#
ReXNet-1.3x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
- pyrovision.models.rexnet1_5x(pretrained: bool = False, progress: bool = True, **kwargs: Any) ReXNet [source]#
ReXNet-1.5x from “ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
ResNet#
- pyrovision.models.resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) ResNet [source]#
ResNet-18 from “Deep Residual Learning for Image Recognition”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
- pyrovision.models.resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) ResNet [source]#
ResNet-34 from “Deep Residual Learning for Image Recognition”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
MobileNet v3#
- pyrovision.models.mobilenet_v3_small(pretrained: bool = False, progress: bool = True, **kwargs: Any) MobileNetV3 [source]#
MobileNetV3 model from “Searching for MobileNetV”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module
- pyrovision.models.mobilenet_v3_large(pretrained: bool = False, progress: bool = True, **kwargs: Any) MobileNetV3 [source]#
MobileNetV3 model from “Searching for MobileNetV”.
- Parameters:
pretrained (bool) – If True, returns a model pre-trained on ImageNet
progress (bool) – If True, displays a progress bar of the download to stderr
- Returns:
classification model
- Return type:
torch.nn.Module